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Nonlinear processes in a hypersonic boundary layer on a sharp cone are considered
using the bicoherence method. The experiments are performed for a Mach number
M∞ = 5.95 with introduction of artificial wave packets at the frequency of the second
mode. It is shown that the basic mechanism of nonlinear interaction at the location of
the maximum r.m.s. voltage fluctuation is the subharmonic resonance; all nonlinear
interactions in the maximum r.m.s. voltage fluctuation layer are related to the second
mode of disturbances; nonlinear processes above and below that layer are much more
intense than those in it. The effect of artificial disturbances on nonlinear interactions
in the boundary layer is shown to be insignificant.

1. Introduction
The study of the boundary-layer transition to turbulence is of particular importance

at high speeds as the skin friction and thermal loads on an air vehicle significantly
depend on the boundary-layer flow state. In the case of low-level free-stream
disturbances (i.e. for in-flight conditions), the transition of the boundary layer is
assumed to be due to the growth of boundary-layer disturbances and their subsequent
nonlinear interactions. The dominating type of disturbance in a hypersonic boundary
layer beginning from M ≈ 4 is the second mode or the Mack mode, so called since
it was first theoretically identified by Mack in 1969. In contrast to the first vortical
mode or instability of the type of Tollmien–Schlichting waves, the second mode has
an acoustic nature and is an inviscid instability. The first experimental detections
of the second mode were made by Kendall (1975), Demetriades (1978), and Stetson
et al. (1983).

Nonlinear interaction of the boundary-layer disturbances leads to the formation of
phase-coupled waves, which results in transition to turbulence of the laminar flow,
manifested, in particular, in a redistribution of spectral energy. It was found that
the basic type of nonlinear interaction in a subsonic boundary layer at the initial
stage of its transition is the subharmonic (parametric) resonance of the Tollmien–
Schlichting waves (Kachanov & Levchenko 1984; Saric, Koslov & Levchenko 1984).
This type of three-wave interaction involves nonlinear amplification of disturbances
whose frequency equals half of the frequency of the fundamental wave (subharmonic).
Kosinov et al. 1994 showed that subharmonic resonance is also the main mechanism of
interaction in the weakly nonlinear region of the transition in a supersonic boundary
layer. In contrast to the subsonic case, resonance interaction at supersonic velocities
occurred for an asymmetric wave triad.
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Detailed research on nonlinear processes at subsonic and moderate supersonic
velocities (M < 4) became possible due to the development of the method of artificial
wave packets (Kachanov, Gilyev & Kozlov 1983; Maslov, Kosinov & Shevelkov 1990).
Application of this method at hypersonic velocities is rather difficult. Nonlinear
processes can be studied without the introduction of artificial fluctuations by the
statistical method and by the bicoherence method. In the statistical method, the
existence of nonlinearity is determined by signal deviation from the Gaussian
distribution (Papoulis 1965; Nikias & Raghuveer 1987). The statistical method also
has some drawbacks: it does not allow the obtaining of particular characteristics
of the nonlinear process. To determine, in addition to mere identification of the
nonlinearity, which waves are nonlinearly coupled and the degree of this coupling,
one has to measure signal bicoherence (for quadratic nonlinearity only). As applied
to processes in hypersonic boundary layers, this method was first used by Kimmel &
Kendall (1991) to analyse data obtained for a sharp cone with a half-angle of 7◦

and M∞ = 8 and later by Chokani (1999) to analyse data obtained in the quiet wind
tunnel NASA LaRc Mach-6 for a sharp cone with a pressure gradient. It was shown
in their experiments that the second mode harmonic observed in signal spectra is the
result of nonlinear interaction (harmonic resonance). The existence of subharmonic
resonance in a hypersonic boundary layer on a sharp cone was first demonstrated
by Shiplyuk et al. 2003(a). Interaction of the second mode with natural and artificial
disturbances was considered by Shiplyuk et al. 2003(b). The influence of a porous
surface on the disturbance evolution and their nonlinear interactions in a hypersonic
boundary layer can be found in Chokani et al. (2005).

In all the above-mentioned experiments at hypersonic speeds nonlinear investi-
gations were carried out in the layer of the maximum r.m.s. voltage fluctuation.
In addition to nonlinear interactions in the layer of the maximum fluctuation, the
present work deals with nonlinear processes above and below it. The influence
of artificial disturbances on nonlinear interactions in the boundary layer is also
analysed.

2. Experimental equipment
The experiments are performed in the T-326 hypersonic blowdown wind tunnel of

the Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian
Branch of the Russian Academy of Sciences (ITAM SB RAS) at a free-stream Mach
number M∞ = 5.95, stagnation pressure P0 = 106 Pa, and stagnation temperature
T0 = 390 K, which yield a free-stream Reynolds number Re1∞ = 12 × 106 m−1 and the
Reynolds number based on boundary-layer-edge values Re1e = 15.8 × 106 m−1. The
values of the parameters P0 and T0 are maintained constant during the experiment
within 0.06 % and 0.25 %, respectively. The free-stream parameters M∞ and Re1∞ are
determined from the measured values of P0 and T0 and from the known dependence
M∞ = f (P0) obtained by studying the flow field in the T-326. The test section of
the tunnel is open-jet test section 400 mm in length having a core flow diameter of
180 mm. The fluctuations of the mass flow ρu (ρ is the flow density and u is the flow
velocity) are measured by a constant-current hot-wire anemometer with a frequency
range up to 600 kHz. Single-wire probes 1mm long are used; the probes are made
from a tungsten wire 5 μm in diameter. The position accuracy of the hot-wire probe
across the boundary layer is 0.01 mm. The x coordinate is taken from the model
tip along the cone generatrix (figure 1); the accuracy of motion along the x-axis is
0.02 mm. The model is rotated around its centreline within 0.1◦.
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Figure 1. Schematic of the model. 1 – glow discharge source (GDS); 2 – hot-wire gauge.

The variable component of the electric signal from the hot-wire output is transferred
into a PC memory through a 12-bit analog-to-digital converter. The anemometer
output voltage is sampled at 5 MHz, which yields Nyquist frequency 2.5 MHz. As
the frequency bandwidth of the hot wire is limited, the data used are from the range
up to 600 kHz only.

The model is a 7◦ half-angle steel cone 0.5 m long and sharp nosed. The bluntness
radius of the model tip is smaller than 0.1 mm. The model is mounted at zero incidence
with an accuracy of 0.06◦. To excite artificial disturbances in the boundary layer, the
model is equipped with a glow discharge source (GDS). The operation of this device is
based on the high-frequency electric glow discharge in a chamber beneath the model
surface. This technique is widely used at ITAM to insert artificial disturbances into
supersonic and hypersonic boundary layers (see e.g. Fedorov et al. 2003). Periodic
oscillations penetrate into the boundary layer through an orifice 0.4 mm in diameter,
which is located at x = 120 mm. The GDS is driven by high-voltage unidirectional
periodical pulses with amplitudes up to 700 V. The frequency of artificial disturbances
is 290 kHz, which is in the second-mode frequency band in the present conditions.
For the model to be under adiabatic conditions, the stagnation temperature at the
beginning of the run is increased to T0 ≈ 500 K, and the model is heated within several
minutes to the recovery temperature Tr ≈ 330 K.

3. Statistical and bispectral analysis
To identify the effects of nonlinearity, the known fact that a Gaussian signal passing

through a nonlinear system deviates from the normal distribution is used (Papoulis
1965; Nikias & Raghuveer 1987). To determine this deviation, skewness S =μ3/σ

3 and
kurtosis K = μ4/σ

4 are calculated, where μ3 = E{(v-vmean)
3} is the third-order central

moment, μ4 = E{(v-vmean)
4} is the fourth-order central moment, σ 2 = E{(v-vmean)

2} is
the variance, vmean = E{v} is the mean value, and E{} is the expected value. For the
Gaussian distribution, S = 0 and K = 3.

A significant drawback of this method is that it does not yield particular
characteristics of the nonlinear process. One has to apply a bispectral analysis to
not merely obtain the effect of nonlinearity but also to determine which waves are
nonlinearly coupled and the degree of this coupling (or the degree of nonlinear
interaction). The bispectrum is obtained by a Fourier transform applied to the
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third-order cumulant (or moment because cumulants and moments are identically
equal up to the third order inclusive) (Nikias & Raghuveer 1987; Kim & Powers
1979)

B(f1, f2) =
∑

k,l

c3(k, l)e−i2π(f1k+f2l) = E{V ∗(f1 + f2)V (f1) V (f2)},

where c3(k, l) = E{v(t)v(t + k)v(t + l)} is the third-order cumulant (moment) and V is
the Fourier transform of the signal v(t); the asterisk denotes the complex conjugate.

In contrast to the power spectrum, the bispectrum retains information about the
wave phase, which allows one to identify phase-coupled waves. The bispectrum
value depends on the wave amplitude; hence, it is usually normalized to obtain the
bicoherence:

bic2(f1, f2) =
|B(f1, f2)|2

E{|V (f1)V (f2)|2}E{|V (f1 + f2)|2}
.

The bicoherence amplitude characterizes the degree of quadratic phase coupling of
waves with frequencies f1, f2, and f3 = f1+f2. With such normalization, bicoherence
is bound by 0 (completely independent waves) and 1 (completely coupled waves);
however, the value of the bicoherence is also dependent on the signal-to-noise ratio
of the measured data. Thus, if the bicoherence is greater than zero for the frequency
components f1 and f2, the triad of waves with frequencies f1, f2, and f3 = f1+f2 is
phase coupled. Cubic nonlinearity or four-wave interaction are analysed with the use
of trispectra determined via the fourth-order cumulant.

By virtue of the bicoherence symmetry, it suffices to know its value in the triangular
region defined by the vertices (0, 0), (fN, 0), (fN/2, fN/2), where fN is the Nyquist
frequency. In the present paper, the figures are plotted in the range 0<f1, f2 < 600 kHz
(the upper limit is due to the frequency range of the hot-wire anemometer) and
offer redundant information (the graphs are symmetric about the line f1 = f2).
However, in our opinion, such a presentation improves data perception. The
bicoherence does not reveal which interaction occurs: f3 – f1 → f2, f3 – f2 → f1,
or f1 +f2 → f3, i.e. bicoherence cannot indicate which of the three waves is generated
owing to nonlinear processes. Correct interpretation of data requires additional
information (e.g. the Fourier spectrum of the signal).

Bicoherence is obtained from non-overlapping FFT blocks of length 512; the
frequency resolution of the bicoherence is 9.8 kHz.

4. Experimental results
4.1. Evolution of nonlinear interactions at the maximum r.m.s. disturbance location

Figure 2 shows the evolution of the Fourier spectra of the signal obtained at the
maximum r.m.s. disturbance location on a sharp cone at the centre of the artificial
wave packet. The spectra clearly show the first (f ≈ 50–220 kHz) and second (f ≈ 230–
380 kHz) modes. The peak corresponding to the second mode is seen to be shifted
toward low frequencies in the downstream direction. The reason is that the wavelength
of the second mode is tuned to the boundary-layer thickness (approximately twice
the boundary-layer thickness, Stetson et al. 1983). The figure also shows the peak
at a frequency of 290 kHz corresponding to the artificial disturbances. The injected
disturbances have low amplitude, but much higher than that of the oscillations of
the first and second modes in the spectrum. The reason is multiple averaging of
disturbance spectra (approximately 100 times). To retain information on natural
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Figure 2. Fourier spectra evolution in the maximum r.m.s. voltage fluctuation layer at the
centre of an artificial wave packet.

and artificial oscillations, the spectra are averaged as random quantities, i.e. the
squared amplitudes of the Fourier spectra are averaged. As the amplitude of artificial
disturbances is approximately identical for different times and the amplitude of
natural oscillations is rather scattered because the process itself is random, artificial
oscillations can be identified in signal spectra after averaging.

The disturbances of the first and second mode increase up to the stability Reynolds
number R =

√
Re1ex = 2170 (x = 297 mm), and then redistribution of the spectral

energy is initiated by strong nonlinear processes: the spectrum becomes more uniform,
and the second-mode amplitude decreases.

Figure 3(a) shows typical nonlinear interactions at the maximum r.m.s. disturbance
location. Measurements were carried out at the centre of the wave packet. The dot-
and-dashed line in the figure is the axis of symmetry of the graph, the solid line
shows the equation f1 + f2 = fII , where fII is the frequency of the local maximum
in the Fourier spectrum corresponding to the second mode. In each plot the Fourier
spectrum is shown above and to the right of the plot of the bicoherence; this facilitates
the interpretation of the peaks identified in the bicoherence.

Interactions occur in three frequency regions:
1. (f1, f2) = (300 kHz, 300 kHz) ≈ (fII , fII ). Hence, the nonlinear mechanism gen-

erates harmonics of the second-mode waves: (f1 ≈ fII ) + (f2 ≈ fII ) → (f3 = f1 + f2 ≈
2fII ). This type of interaction was previously found by Kimmel & Kendall 1991 and
Chokani 1999.

2. Along the line f1 ≈ 295 kHz. The interacting waves have frequencies f1 ≈ 280–
310 kHz and f2 ≈ 50–150 kHz. The first interval of frequencies lies in the region
of the second-mode maximum in the Fourier spectrum, and the second interval of
frequencies almost completely covers the frequency range corresponding to the first
mode.

3. In a wide frequency range along the line f1 + f2 = fII ≈ f0.
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Figure 3. Bicoherence in the maximum r.m.s. voltage fluctuation layer at the centre of an
artificial wave packet. The dot-dashed line is the axis of symmetry of the graph; the solid line
shows the equation f1 + f2 = fII .

Third type of nonlinear interaction involves the waves f1, f2, f3 = f1 + f2 ≈ fII ≈ f0.
The centre of interaction is (f1, f2) ≈ (125 kHz, 175 kHz), f3 = f1 + f2 = 300 kHz
≈ fII ≈ f0. The frequency 125 kHz might appear because it is close to the frequency
of the local maximum in the Fourier spectrum corresponding to the first mode
(fI ≈ 120 kHz). It should be noted that the frequencies of 125 and 175 kHz are close
to the frequency of the second-mode subharmonic (at this station, 1/2fII ≈ 155 kHz).
This type of nonlinear interaction in hypersonic boundary layers was first obtained
by Shiplyuk et al. (2003a). Identification of waves close to the second-mode
subharmonic and synchronized with the fundamental wave is a necessary condition
of subharmonic resonance with detuning. Thus, the following conditions have to be
satisfied for the parametric three-wave resonance to exist in the general case (Craik
1971):

f1 + f2 = f3, α1 + α2 = α3, β1 + β2 = β3 (1)

(α and β are the streamwise and transverse wavenumbers).
From the definition of bicoherence, we obtain

f1 + f2 = f3 ≈ fII, ϕ1 + ϕ2 = ϕ3, (2)

where ϕ is a phase. The first equality is identical for both cases. Taking into account
that ϕ = αx + βz, the second equality in (2) can be rewritten as

α1x + β1z + α2x + β2z = α3x + β3z,

(α1 + α2)x + (β1 + β2)z = α3x + β3z.

Waves of the second mode are two-dimensional (Poggie & Kimmel 1997; Maslov
et al. 2006), i.e. β3 =βII = 0, and waves close to the subharmonic are three-dimensional
because they lie in the range of the first-mode disturbances; hence, as was shown in
our previous experiments (Maslov et al. 2006), subharmonic oscillations consist of a
pair of oblique waves with β1 = − β2. Thus, we obtain

α1 + α2 = α3. (3)
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All resonance conditions are satisfied. This interaction resembles the subharmonic
resonance observed at subsonic velocities (Kachanov & Levchenko 1984) where the
disturbances of the fundamental wave are also two-dimensional, and the subharmonic
waves form a pair of oblique waves. As the subharmonic frequency lies in the range
corresponding to the first-mode oscillations, which is noted above, apparently the
interaction between the modes occurs here.

The presence of a wide frequency range of interacting waves and identification
of a frequency not completely coincident with the subharmonic frequency do
not contradict the existence of the resonance. In the case of subsonic velocities,
subharmonic resonance exists with a frequency detuning f1/2 ± �f up to �f = f1/2

(Kachanov & Levchenko 1984), and phase synchronism of waves participating in
the resonance is observed in a wide range of frequencies up to the fundamental-
wave frequency f0 (Borodulin, Kachanov & Koptsev 2002). It is of interest to note
that in the second interaction type (along the line f1 ≈ 295 kHz) the frequency of
the third interacting wave (f1 ≈ 100 kHz) + (f2 ≈ 300 kHz) → (f3 = f1 + f2 = 400 kHz)
roughly corresponds to the spectral component 3

2
f1/2 ≈ 430 kHz often observed in

subharmonic resonance at subsonic velocities (Kachanov 1994).
Nonlinear interaction along the line f1 + f2 = fII can also be found in Kimmel &

Kendall (1991), but this type of interaction was much weaker than interaction leading
to the generation of the second-mode harmonic, and we did not consider it.

As the initial stage of nonlinear interaction is similar to that observed at subsonic
velocities, the later stages of the transition in a hypersonic boundary layer can also
be expected to be similar to the case of subsonic velocities. Indeed, the computations
of Adams & Kleiser (1996) showed that the late stage of the nonlinear region of
the transition gives rise to structures that resemble �-vortices observed in subsonic
boundary layers. The computations were performed by means of direct numerical
simulations for a flow with M = 4.5 past a flat plate. Subharmonic resonance was set
as a nonlinear interaction mechanism.

The quadratic-type nonlinear processes almost disappear at the last station
(figure 3b). It is seen from figure 2 (R = 2230, x = 315 mm), however, that the Fourier
spectrum of the signal becomes close to turbulent at this location owing to nonlinear
interactions, which can be inferred from a more uniform shape of the spectrum. As
will be shown in § 4.2, strongly nonlinear processes occur below and above the layer of
the maximum r.m.s. voltage fluctuation, which seem to be responsible for the spectral
energy redistribution.

Some other details of the evolution of nonlinear interactions at the maximum r.m.s.
disturbance location are given in Shiplyuk et al. (2003b).

4.2. Nonlinear processes across the boundary layer

In this Section, a nonlinear analysis of data measured by a hot wire at the centre
of an artificial wave packet across the boundary layer is performed. The boundary-
layer measurements are carried out at four stations: R = 1480 (x = 138 mm), R = 1820
(209 mm), R = 1970 (245 mm), and R =2230 (315 mm).

At the first location R = 1480, the kurtosis K corresponds to the Gaussian
distribution (K ≈ 3, figure 4b). Except for a small region y/δ = 0.751–1, the skewness
S is also consistent with the normal distribution (S ≈ 0, figure 4b). For y/δ = 0.751–1,
the skewness is slightly different from zero, which is indicative of weak nonlinear
processes. Profiles of the mean voltage E and root-mean-square fluctuations of voltage
〈e〉 on the hot-wire probe are shown in figure 4(a). The y coordinate is normalized
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Figure 4. (a) Mean voltage E and root-mean-square fluctuations of voltage 〈e〉 on the
hot-wire probe (b); skewness S and kurtosis K . R = 1480 (x =138 mm).

to the boundary-layer thickness δ. The peak in the distribution of 〈e〉 shows the layer
of the maximum r.m.s. voltage fluctuation.

The bicoherence shows that no phase-coupled waves are observed in the boundary
layer (figure 5a, y/δ = 0.75) at this location up to the layer of the maximum r.m.s.
voltage fluctuation (y/δ ≈ 0.7, figure 4a) and higher. The dashed line shows the
equation f1 + f2 = f0, where f0 is the frequency of artificial disturbances. In the region
where S differs from zero in the low-frequency range (up to ∼ 50 kHz), however, the
bicoherence shows the presence of nonlinear interactions and reaches the maximum
value near the upper edge of the boundary layer (figure 5b, y/δ = 0.97). In the free
flow (figure 5c, y/δ =1.05), phase coupling disappears again. The Fourier spectra
of the signal display a moderate peak at the frequency of artificial disturbances
(f = 290 kHz), which disappears toward the boundary-layer edge. Neither the first
nor the second modes can be identified in the signal spectra yet.

The presence of nonlinear processes at the boundary-layer edge at the station where
the flow is definitely laminar can be related to aerodynamic noise in the T-326 wind
tunnel, which is not a quiet tunnel. The level of free-stream mass flux pulsation is
about 0.5 % of mean mass flux. Thus, high-amplitude disturbances present in the free
flow and incident on the boundary layer can initiate weak nonlinear interactions at
the boundary-layer edge. However, at the next stations nonlinear interactions near the
boundary-layer edge have a wider spectrum and the bicoherence amplitude becomes
higher. This shows that at downstream locations the nonlinear mechanism is related
to inner processes of boundary layer, but not to free-stream noise. Otherwise, the
interaction frequency range and interaction intensity would not be changed, because
the free-stream noise spectrum and amplitude are the same for all stations. Nonlinear
processes above the maximum r.m.s. disturbance can also be a result of a mixture of
different nonlinear mechanisms.

At the next station R =1820 (209 mm), the skewness noticeably deviates from zero
toward positive values in the region above the layer of the maximum r.m.s. voltage
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R = 1480 (x = 138 mm).
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Figure 6. (a) Mean voltage E and root-mean-square fluctuations of voltage 〈e〉 on the
hot-wire probe (b) skewness S and kurtosis K . R = 1820 (x = 209 mm).
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Figure 8. (a) Mean voltage E and root-mean-square fluctuations of voltage 〈e〉 on the
hot-wire probe (b) skewness S and kurtosis K . R = 1970 (x = 245 mm).

fluctuation and toward negative values in the region below that layer (figure 6b). This
deviation disappears near the boundary-layer edge. It is of interest to note that the
skewness in the layer of the maximum r.m.s. voltage fluctuation is close to the value
of the normal distribution. The kurtosis equals 3 across the entire boundary layer and
outside it.

The bicoherence shows that there are nonlinear processes above the layer of
the maximum r.m.s. voltage. In addition to interactions at low frequencies, which
have already been observed at R = 1480, a weak interaction arises along the line
f1 + f2 = f0 (figure 7a, y/δ ≈ 0.85). As at the previous station, the bicoherence reaches
the maximum amplitude near the boundary-layer edge (figure 7b, y/δ = 0.97). The
range of nonlinear interaction at low frequencies becomes wider: f � 100 kHz. The
peak at the frequency of artificial disturbances in the Fourier spectra becomes higher
(figure 7a). Nonlinear interactions vanish outside the boundary layer.



Nonlinear processes in a hypersonic boundary layer on a cone 437

At the station R =1970 (245 mm), the skewness deviations toward negative values
below the maximum r.m.s. voltage fluctuation layer and toward positive values above
it become much more noticeable (figure 8b), i.e. nonlinear interactions become more
intense. The deviation of the kurtosis is also noticeable at this station. As the kurtosis is
determined via the fourth-order moment related to trispectra, nonlinear interactions of
the third order apparently start contributing to the process here (Nikias & Raghuveer
1987). Qualitatively, the kurtosis behaviour coincides with the skewness behaviour.
In the region of the layer of the maximum r.m.s. voltage fluctuation, the value of K
corresponds to the Gaussian distribution. The skewness line intersects the zero axis
(S = 0) somewhat lower than the layer of the maximum r.m.s. voltage fluctuation. The
free-stream values of both coefficients are consistent with the Gaussian distribution.

The bicoherence amplitude exceeds the noise level at the same height at which
S starts deviating from zero (figure 9a, y/δ = 0.34). The interaction proceeds
in the low-frequency region f � 70 kHz. On moving upward from the model
wall, the bicoherence amplitude in the low-frequency range gradually decreases;
simultaneously, nonlinear processes appear along the subharmonic-resonance line
(figure 9b, y/δ = 0.5). Interaction of the second mode with low-frequency waves is
most intense here (f1 ≈ 290 kHz, f2 ≈ 25 kHz, f3 = f1 + f2 ≈ 315 kHz).

In the layer of the maximum r.m.s. voltage fluctuation, nonlinear processes at
low frequencies disappear, but the bicoherence amplitude along the subharmonic-
resonance line increases (figure 9c, y/δ =0.74). Phase-coupled waves start to appear
above the maximum r.m.s. voltage fluctuation layer over the entire region below the
line of the basic interaction (figure 9d , y/δ = 0.82). The interaction corresponding to
the subharmonic resonance disappears toward the boundary-layer edge. There remains
only the region in the low-frequency range, which is observed at the previous stations
(figure 9e, y/δ =0.93). No nonlinear processes are observed above the boundary layer.

As expected, nonlinear interactions become more intense in the downstream
direction. At the last location R = 2230 (x =315 mm), the skewness and kurtosis
deviations become much more noticeable (figure 10b). There are no regions in the
boundary layer with K and S corresponding to the Gaussian distribution, except for
the points of intersection of the lines K = 3 and S = 0. Qualitatively, the skewness
and kurtosis distributions remain the same as those for R = 1970. The increase in the
kurtosis value shows that the role of the third-order nonlinear interactions becomes
more and more significant. These data differ from those measured at the previous
locations in that the deviation of the values of S and K from the Gaussian distribution
is extended outside the boundary layer and vanishes at the height y/δ = 1.55.

Near the wall, the bicoherence displays strong nonlinear interactions in the low-
frequency range (figure 11a, y/δ = 0.09). As at the previous station, the interaction
intensity at low frequencies decreases with increasing y coordinate and almost
disappears in the layer of the maximum r.m.s. voltage fluctuation (figure 11b,
y/δ =0.61). Instead, a weak interaction appears along the line f1 + f2 = fII , which has
been already observed previously (figure 3b). The amplitude of artificial disturbances is
almost invisible in the Fourier spectrum of the signal (figure 11b). As at the previous
station R = 1970, phase-coupled waves along the line f1 + f2 = fII disappear with
increasing y, and nonlinear processes start to appear in the entire region below the
subharmonic-resonance line, reaching the maximum value at the boundary-layer edge
(figure 11c, y/δ =0.98). The bicoherence amplitude here reaches the maximum value
bic2 = 0.43 (bic= 0.66). Apparently, it is because of intense nonlinear interactions
below and above the layer of the maximum r.m.s. voltage fluctuation that the Fourier
spectrum becomes more smooth, which is observed on moving in the x direction
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Figure 9. Bicoherence and Fourier spectra across boundary layer. R = 1970 (x = 245 mm).

(figure 2, R = 2230). Though the nonlinear processes along the subharmonic-resonance
line disappear above the maximum r.m.s. voltage fluctuation layer, the interaction
region is bounded by this line (figure 11c, y/δ = 0.98), i.e. the frequency of the
interacting waves is lower than fII . Although the Fourier spectrum at y/δ = 0.98 is
smooth and shows no modes, we believe that the most likely reason for this bound is
Fourier amplitude decay beyond the frequency fII in the maximum r.m.s. layer. This
suggests that the second mode plays an important role in nonlinear processes in a



Nonlinear processes in a hypersonic boundary layer on a cone 439

500 1000 15000

1

2

2 6
0

1

2
2.2 2.4 2.6 22.8 3.0 0 0.5 1.0 1.5

 Kurtosis

 

(a) (b)

Skewness

 S

K

y

�e� (mV)

�e�
E

E (V)

δ

4 8

Figure 10. (a) Mean voltage E and root-mean-square fluctuations of voltage 〈e〉 on the
hot-wire probe; (b) skewness S and kurtosis K . R = 2230 (x = 315 mm).

(a)

  

R = 2230, y/δ = 0.98    

(c)

120004000100 200 300 400
f1 (kHz) Af  (V)

12000

4000

400

300

200

100

0

120004000100 200 300 400
f1 (kHz) Af  (V)

0

12000

4000

400

300

200

100

12000

4000

400

300

200

100

0 120004000100 200 300 400
f1 (kHz) Af  (V)

120004000100 200 300 400
f1 (kHz) Af  (V)

0

f 2
 (k

H
z)

A
f  

(V
)

12000

4000

400

300

200

100

f 2
 (k

H
z)

A
f  

(V
)

R = 2230, y/δ = 0.09

R = 2230, y/δ = 0.61 R = 2230, y/δ = 1.23

(b) (d)

0.042

0.086

0.13

0.17

0.22

0.26

0.31

0.35

0.042

0.086

0.13

0.17

0.22

0.26

0.31

0.35

0.042

0.086

0.13

0.17

0.22

0.26

0.31

0.35

0.042

0.086

0.13

0.17

0.22

0.26

0.31

0.35

Figure 11. Bicoherence and Fourier spectra across boundary layer. R = 2230 (x = 315 mm).
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Figure 12. Bicoherence and Fourier spectra (a) at the centre of an artificial wave packet
(b) and outside it. R = 2105 (x =280 mm).

boundary layer. By analogy with the subsonic model of the transition to turbulence
we can assume that the second mode plays a catalytic role in energy transfer from
the mean flow to the low-frequency disturbances. Intensive nonlinear interactions in
the low-frequency range may also indicate the appearance of coherent structures.

In contrast to the previous stations, here phase-coupled waves do not disappear
out of the boundary layer (figure 11d , y/δ = 1.23). Nevertheless, the region of the
interacting waves decreases to 100–150 kHz, and the value of the bicoherence is lower.
The bicoherence amplitude displays no nonlinear processes only at a height where the
skewness takes a zero value (figure 10b, y/δ =1.55). As is seen from figure 10(a), the
r.m.s. fluctuations also occur outside the boundary-layer edge. Though the plot of
the mean voltage distribution does not display any distortions of the mean flow
parameters at the boundary-layer edge and above, nevertheless the fact that the
nonlinear processes and mass-flow fluctuations occur outside the boundary layer
definitely suggests that a turbulent boundary layer starts to form.

4.3. Effect of artificial disturbances on nonlinear processes

The next step in a nonlinear investigation of the hypersonic boundary layer is the
application of an artificial wave packets (AWP) method. It is important to show that
the AWP method does not affect basic nonlinear mechanisms and can be applied
in such kinds of investigations. To determine the effect of artificial disturbances
on nonlinear processes in the boundary layer, the measurements are performed
in the layer of the maximum r.m.s. voltage fluctuation over the angle of model
revolution Θ .

Figure 12 shows the results measured at the location R = 2105 (x = 280 mm). At
the centre of the wave packet (figure 12a, Θ = − 0.1◦), the Fourier spectrum displays
a high-amplitude peak corresponding to artificial oscillations, which vanishes outside
the wave packet (figure 12b, Θ = − 25◦). The nonlinear interactions follow the line
f1 + f2 = fII . At the centre of the wave packet and outside it, no differences in the
interaction pattern are observed.

Figure 13 shows the bicoherence at the centre of the wave packet at R = 2230
(x =315 mm) with the GDS off (figure 13a) and on (figure 13b). The operation of the
source of artificial disturbances is seen to produce no effect on nonlinear processes.

Therefore, the artificial disturbances have no significant effect on the boundary
layer nonlinear processes.
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Figure 13. Bicoherence and Fourier spectra at the centre of an artificial wave packet with
the GDS (a) off and (b) on. R = 2230 (x = 315mm).

5. Conclusions
The initial region of the laminar–turbulent transition on a sharp cone at free-stream

Mach number 5.95 has been investigated by means of a bispectral analysis.
It has been found that the main type of nonlinear interaction in the layer of

the maximum r.m.s. voltage fluctuation involves interactions in a wide range of
frequencies along the line f1 + f2 = fII with a maximum close to the frequency of the
second-mode subharmonic, which indicates the existence of subharmonic resonance
with detuning. As the second-mode subharmonic frequency belongs to the range of
frequencies corresponding to the first mode of disturbances, interaction between the
modes occurs here.

A nonlinear interaction leading to excitation of the second-mode harmonic, which
was previously observed by other authors, is shown.

The bicoherence also shows the line of interaction (f1 ≈ fII ) of the second-mode
waves with disturbances whose frequencies lie in the first-mode frequency range.
Interaction between the modes can occur here as well. Thus, all basic types of
nonlinear processes in the layer of the maximum r.m.s. voltage fluctuation are
associated with the second mode.

Nonlinear processes at the boundary-layer edge in the range of low frequencies
(up to 50 kHz) arise long before they appear in the layer of the maximum r.m.s.
voltage fluctuation. Nonlinear processes in the regions above and below this layer are
fairly intense even when nonlinear interactions (of the quadratic type) have almost
disappeared from it. At the late stages of the transition, the nonlinear processes reach
beyond the boundary layer, forming a turbulent boundary layer.

Artificial disturbances have no significant effect on the boundary-layer nonlinear
processes.

The authors are grateful to Nd. Chokani for help in mastering the bispectral analysis
and for useful discussions. The work was supported by the Russian Foundation for
Basic Research (Grant 05-01-00349).
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